" Schematiks I
ALFA N eWS|Etter 1st November 2020

Introduction

Welcome to the 1st issue of the ALFA newsletter!

Given some significant and exciting upcoming developments in ALFA, we thought it is best to communicate
these using a newsletter.

A major theme for version 0.9 has been comprehensive support for expressions in the language extending the
support introduced in version 0.8. The following features will be released as part of version 0.9 of ALFA SDK
and RTL (Runtime Libraries).

For further questions, please contact us - info@schematiks.io.

Contents:

1. Fields based on expressions
Assign a default value or expression to a field

2. Builtin functions to interrogate external data sources
Use newly added query() and lookup() functions to reference data from pluggable sources

3. Using decision table expressions
Use multiple inputs to express complex rules of how to produce an output

4. Populating ALFA objects using data from relational datastores
Persist or retrieve objects from databases such as Oracle, Hive in to Java/JVM applications etc

5. Maven Plugin and Java runtime group name update
The Maven coordinate update to io.alfa-lang.*

6. ALFA Maven Plugin installation update
Instructions on installing the Maven Plugin

© 2020 Schematiks Ltd www.schematiks.io

http://www.schematiks.io/
mailto:info@schematiks.io
http://www.schematiks.io/

1. Fields based on expressions

Assigning default values or having a field's value being calculated by a custom function is a requirement many
modelers and developers come across. Without such a capability, the model can only document the expected
value and it is left to the developer to assign the correct values. This can lead to gaps in implementation or
mis-interpretation of requirements.

With ALFA field expressions, such default values and calculated values can now be expressed as part of the
model, removing the potential for error and burden on developers.

Fields within user-defined-types will now be capable of being assigned literal values or expressions. This can be
used to express default or calculated values. Expressions include calls to service functions enabling your service
implementations to return values to be assigned to fields. Expressions can be literal values or values dependent
on other fields, which opens the door to a host of possibilities.

Refer to the ALFA code below for an example of field expressions.

record Request {
VersionTimestamp : datetime = timestamp()
VersionHost : string = AuditHelper::getHost()
Type : RequestType = RequestType.New
Metadata : map< string, string > = { "source" : "unknown", "type" : "unknown" }
TimeTolLiveSecs : int = 600
Payload : string
MessageSize : long = len(Payload) + 64
}

service AuditHelper() {
getHost() : string
}

enum RequestType {
New Cancel

}

ALFA data model with fields assigned to values or functions

Some default values can only be derived from custom code. The example model above requires the host name to
be assigned. For that purpose, ALFA will call out to an implementation of the service AuditHelper.

The Alfa code generators evaluate what fields will be assigned in the constructor or the final build method. For
example, given the ALFA definition above, the Java generated builder class constructor initialises fields with
literal expressions.

© 2020 Schematiks Ltd www.schematiks.io

http://www.schematiks.io/

private RequestBuilder(alfa.rt.IBuilderConfig cc) {
setVersionTimestamp(java.time.LocalDateTime.now());
setVersionHost(
builderConfig()

.getServiceFactory(datahub.AuditHelper.Factory.class)
.create().getHost());

setType(datahub.RequestType.New);

setMetadata(new java.util.HashMap<java.lang.String, java.lang.String>() { {
put("source", "unknown");
put("type", "unknown");

}Ys
setTimeToLiveSecs(609);

Generated Java code snippet for default value initialisation

The generated Java build() method contains assignments to calculated values. Calculated value field's set*
methods are private, so cannot be invoked from outside of the class.

Those paying close attention will notice that setMessageSize is being invoked in the build method and not the
constructor as MessageSize has a dependency on the _payload field.

public Request build() {
setMessageSize(_payload.length() + 64);

Generated Java code snippet for setting field based on functions

This pattern will apply to all ALFA generated target runtime languages.

2. Builtin functions to interrogate external data sources

In addition to the long list of existing functions, ALFA now includes 2 new builtin functions - query and lookup.
These can be used to access external data from sources such as a database.

record Order key (Id : string) {
OrderedBy : CustomerKey
Value : dub

let highValOrders = query(Order, e -> e.Value > 100)
let lastOrder = lookup(Order, new OrderKey(“abc”))

Example of query() and lookup() function usage

© 2020 Schematiks Ltd www.schematiks.io

http://www.schematiks.io/

The query function takes a lambda expression that is converted to a push-done predicate to the underlying
datastore. The lookup function simply loads an entity based on a key.

The underlying datastore implementation is pluggable, so data can be sourced from any type of data store (
database, middle tier cache etc). The query and lookup functions are ideally placed to be used in assert or
library definitions to express logic based on external data sources.

3. Using decision table expressions

Decision table definitions is a useful technique to express multiple input conditions and outputs produced. Such
tables can run into 10s, potentially 100s of rows expressing complex inter-relationships between attributes.

Although these can be expressed as if and else expressions, such code becomes verbose and difficult to
maintain. ALFA introduces a simple syntax to define decision tables.

In the example below, given 3 inputs, the output is evaluated. The output can be refined to capture a single or all
matching conditions. The output can even be an expression, e.g. a function call.

The example below shows a trivial ALFA decision table. You can think of other examples such as insurance
premiums, financial ratings etc.

decideSport(temperature : int, humidity : int, wind : int) : try< string > {
let sport =
(temperature, humidity, wind) match {
([20 .. 35] , < 85 5 < 20) => "Tennis"

([10 ..35], <8 , <10) => "Cycling”
(> 20 , , >= 20) => "KiteFlying"
(> 35 . * g @) => "Chess"

}

return sport

Example decision table expression

Decision tables are generated to Java for ALFA version 0.9 with other languages to follow. The generated Java
code is highly optimised to execute the table cell rules concurrently to get the result in the shortest time.

© 2020 Schematiks Ltd www.schematiks.io

https://en.wikipedia.org/wiki/Decision_table
http://www.schematiks.io/

4. Populating objects using data from a relational database

For those using Java/JVM languages, and ALFA to Java/JPA generator, it is possible directly access data stored
in relational databases and have relational data automatically converted to ALFA generated Java objects. The
returned objects undergo the validation checks expressed in the ALFA model.

All database interactions - insert, update, delete and query are supported.

The code snippet below shows how using ALFA integration with JPA, an object is fetched from a database.

Map<String, String> settings = new HashMap<>();

EntityManagerFactory emf = Persistence.createEntityManagerFactory("AlfaHrlpa", settings);
entityMgr = emf.createEntityManager();

Key ek = EmployeeKey.newBuilder().setEmployeeId(123).build();

Optional<AlfaObject> empDetails = AlfaJpaUtils.find(entityMgr,
EmployeeDetailsDescriptor.INSTANCE, ek);

Interfacing JPA and generated Java objects

5. Maven plugin and Java runtime group name update

Currently the Maven Plugin and Java runtime uses io.alfa.* as the Maven coordinate. To be consistent with
the internet domain name, this will change to io.alfa-1lang.* from version 0.9 onwards.

6. Maven plugin installation update

Detailed steps on installing the ALFA Maven plugin has been added under the tools section.
https://alfa-lang.io/tools/mvnplugin.html

This now includes step-by-step instructions to install the plugin into an Artifactory repository.

© 2020 Schematiks Ltd www.schematiks.io

https://alfa-lang.io/tools/mvnplugin.html
http://www.schematiks.io/

